
WISEngineering: Achieving Scalability
and Extensibility in Massive Online Learning

Xiang Fu1(B), Tyler Befferman1, Jennie Chiu2, and M.D. Burghardt1

1 Hofstra University, Hempstead, NY 11549, USA
{Xiang.Fu,M.D.Burghardt}@hofstra.edu, tbeffe1@pride.hofstra.edu

2 University of Virginia, Charlottesville, VA 22904, USA
jlchiu@virginia.edu

Abstract. Massive Open Online Courses (MOOCs) have raised many
unique challenges to online learning platforms. For example, the low
teacher-student ratio in MOOCs often means lack of feedback to stu-
dents and poor learning experiences. We present WISEngineering, a
MOOCs platform that provides a rich set of features for overcoming
these challenges. The system embraces social media for fostering student
reflection. Its automated grading system adopts an open-architecture and
uses stack generalization to blend multiple machine learning algorithms.
A Zookeeper based computing cluster runs behind auto-grading and pro-
vides instant feedback. A behavior tracking system collects user behavior
and can be later used for learning outcome analysis. We report the design
and implementation details of WISEngineering, and present the design
decisions that allow the system to achieve performance, scalability and
extensibility in massive online learning.

Keywords: Online learning platform · Automated grading ·Web appli-
cation · Scalability · Extensibility

1 Introduction

For thousands of years, humankind has been trying to lower the cost of education,
for making it more accessible. Massive open online courses (MOOCs) [18] are
the latest attempt. MOOCs have great potential to revolutionize how people
learn and how people teach. Using MOOCs in engineering classes, however, faces
several challenges. Distance learning lacks face to face social interaction and
larger class size can often contribute negatively to learning outcomes [1]. These
problems are magnified in engineering education when learners need to be deeply
engaged in hands-on environments and the feedback from peer learners and
teachers is important.

We present WISEngineering [3,4], a distributed and web-based MOOCs plat-
form that intends to address the above challenges. WISEngineering embraces
social media computing for encouraging learner engagement. Its mobile portal,
running as a Google Chrome application, provides easy access in a hands-on

c⃝ Springer International Publishing Switzerland 2015
J. Wang et al. (Eds.): WISE 2015, Part I, LNCS 9418, pp. 323–337, 2015.
DOI: 10.1007/978-3-319-26190-4 22

jlchiu@virginia.edu



324 X. Fu et al.

lab environment using 7 inch Android tablets. In particular, WISEngineering
offers features that are available in a typical social media website, for learners
to scaffold engineering design.

Automated and instant feedback is the key to providing quality learning
experiences in WISEngineering. The system adopts an open architecture that
blends a variety of automated grading algorithms and modules. It can be trained
by providing manual grading samples, and be further calibrated at run time.
A learning outcome system is built upon the automated grading system. All
questions are tagged with learning outcome goals, and a weighted sum for-
mula can be defined to take into account various aspects of a learning process.
A reporting system is available for performing comparative study of learning
outcomes of any selected learner(s).

WISEngineering adopts component based software engineering [13], and it
builds the features set by integrating components from a number of open source
traditional and MOOCs web platforms. For example, its course and user man-
agement system is centered around the WISE system from UC Berkeley [2,22].
Its automated grading module uses the EASE module from edX [5]. Its mobile
portal uses the responsible style template from Twitter [17]. Its instant user feed-
back module is built upon Apache HDFS and Zookeeper [9]. The video processing
uses Google cloud and it is optimized by a local load balancer.

To construct a heterogeneous software system like WISEngineering is chal-
lenging. An open and extensible architecture is required for accommodating a
wide variety of web and mobile application technologies and languages in one
general framework. Caution has to be exercised when wrapping up the compo-
nents, while at the same time, it has to provide authentication/security, atomic
transaction, synchronization, and aggregation of data.

Efficiency and scalability are the key requirements of WISEngineering. For
instance, to support hands-on engineering experiments, the system has to process
large quantity of video data. For another example, to provide instant feedback
to users, multiple auto-graders have to run alive, with each consuming large
amount of RAM resources. The system has to address these issues by leveraging
parallel and distributed computing techniques.

This paper reports the rich feature set as well as the design trade-offs and
implementation details of WISEngineering. Section 2 introduces the system fea-
tures of WISEngineering. Section 3 presents general architectural decisions of the
system. Section 4 discusses how extensibility is accomplished in design. Section 5
addresses system performance and scalability. Section 6 discusses related work,
and Section 7 concludes.

2 System Features

To better understand the architectural and design decisions in developing
WISEngineering, we present a number of its important system features. A work-
ing copy of the system is available at [3]. Section 2.1 first presents the Web-based
Inquiry Science Environment (WISE) system from the University of California,

jlchiu@virginia.edu



WISEngineering: Achieving Scalability and Extensibility 325

Berkeley [2], upon which WISEngineering is built. Then, the rest of the section
discusses the new features.

2.1 Existing Features Provided by WISE

WISE [2], like other educational platforms such as Blackboard [11] and Moodle
[14], provides core functions such as user registration, curriculumdevelopment and
manual grading. The WISE environment has been developed based on extensive
research in classroom instruction. It uses rich online interactive plug-ins (such as
PhET [25]) which are used by students to experiment with scientific concepts in
hands-on exploration.

WISE provides a hosting platform for many science and engineering edu-
cational initiatives, such as the WISE Guys & Gals project (WGG) [3]. WGG
introduces middle school age youth to innovative and engaging blended STEM
based engineering design activities. Each activity is framed to expose youth to
an engineering discipline (e.g. Mechanical, Electrical, and Civil).

WISE provides authoring tools for developing curriculum materials. In WISE,
each activity is structured as a tree view of learning steps, where a step can either
be an HTML page that presents a scientific concept, or an assessment step that
collects a student’s feedback and reflection. WISE supports typical assessment
approaches such as short answer, multiple-choice, match and sequence, and dis-
cussion. Assessment steps such as multiple-choice can be automatically graded
by WISE, however, at this moment, short answer questions still have to be man-
ually graded by teachers.

2.2 WISEngineering Mobile Portal

Powered by WISE technologies [2], the WISEngineering system has incorporated
a number of important system features for meeting the challenge of massive
online learning. The first addition is a mobile portal for students.

The mobile portal is a Google Chrome Web application that ports the major
functions of WISE to tablets. Students no longer have to walk between their
computers and workbench for data entry and analysis. For example, students can
use data plotting and tabulating tools on tablets to analyze and visualize data
on the spot. In particular, WISEngineering embraces social media computing to
engage students in reflection and collaboration. Tools such as the design journal
and design wall are used to share ideas and designs. The mobile tools allow
students to take live pictures and videos, which puts demands on the system to
process large video uploads efficiently.

2.3 Automated Grading

WISEngineering uses an open architecture to embrace automated grading tech-
nologies such as the edX EASE engine [19]. This section presents the user
interface of the system. Later, Sect. 4.2 presents the details of design and
implementation.

jlchiu@virginia.edu



326 X. Fu et al.

Fig. 1. Grading Criteria

Learning Goals and Grading Criteria. WISEngineering supports outcome-
based education [24]. Before the curriculum is developed, a set of learning out-
come goals can be entered into the system. Later, they are associated with
assessment questions in activities. As an example, Fig. 1 presents the user inter-
face for defining a grading criteria. A curriculum developer can choose to use
the question as an indicator for selected learning outcome goals.

Training. Each automated grading criteria has to be trained and calibrated.
At any moment, the system keeps two sets of data: one training set and one
calibration set. Each training/calibration sample consists of three parts: a stu-
dent response, the grade assigned by a human grader, and a grade assigned by
the AI grader (in calibration data only). The training set is used to generate the
gradingmodel, while the calibration set is used tomeasure the quality of themodel.

It is recommended that for each grading level, at least ten samples are entered
for the grading engine to function correctly. WISEngineering provides tools for
creating training samples, and student response samples can be retrieved directly
from the database of the WISE system. Figure 2 displays the training statistics
of a grading criteria. It shows the progress of data entry (of samples), and the
current quality/precision of the model. At the bottom of the page, it also displays
the details of those mismatched records in calibration set.

jlchiu@virginia.edu



WISEngineering: Achieving Scalability and Extensibility 327

Fig. 2. Training Grading Criteria

Grading. After a model is generated for all criteria, a project can be graded. An
automated grading script runs on each server overnight. The script loads each
grading model, performs the grading, calculates the weighted sum of the grade,
and pushes the grade into the database of the original WISE system. Students
can view their grade and the automatic hint/response generated by the AI grader
the second day. The default automated grading module is not instant because
model generation and loading is expensive in both time and space. We present
the details of the instant feedback system in Sect. 5.2.

2.4 Learning Outcome Analysis and Reporting System

The system periodically generates learning outcome reports for all groups of
learners. Figure 3 shows a part of one sample report. Student activity data are
generated by aggregating data from the WISE database. Learning outcomes are
computed using the weighted sum formula associated with each question, which
serves as an indicator of learning goals. Histograms of learning outcomes and the
achievement of each individual learning outcome by each club can be generated
and included in the report. The reporting function allows the curriculum devel-
oper to perform comparative study of learning outcomes on selected learners
over the time.

jlchiu@virginia.edu



328 X. Fu et al.

Fig. 3. Learning Outcome Report

3 System Architecture

In addition to those introduced in Sect. 2, WISEngineering has provided many
other features, such as a user avatar system, a user behavior tracking system, a
video processing cluster, and an instant feedback cluster. To include these het-
erogeneous software components, while at the same time achieving performance
and scalability requires careful design decisions in its software architecture.

Fig. 4. WISEngineering Network Topology

jlchiu@virginia.edu



WISEngineering: Achieving Scalability and Extensibility 329

3.1 Network Topology

The deployment of WISEngineering requires multiple loosely coupled servers
and several clusters. Figure 4 displays the WISEngineering network topology.

To all users of the system, the main access point of WISEngineering is the
main server. It has the identical software stack as all other satellite servers.
The only difference is that the main server has a load balancer distributing the
incoming traffic, and it is equipped with a report aggregation system.

WISEngineering has the ability to support large-scale educational activities
nationwide (e.g., [3]). Such activities are usually organized by national organiza-
tions with a hierarchical structure. The main server records the information and
utilizes this information to generate aggregated report. For example, to retrieve
the number of active students in one particular region, the main server will first
query the organizational structure and submit data retrieval requests to the
related satellite servers for aggregation.

All servers are supported by two back-end clusters. The video processing clus-
ter accepts video uploads from mobile devices, pre-processes/compresses video
files, and stores the media file in the Google Cloud. The design of the instant
grading cluster will be described in details in Sect. 5.2.

3.2 Software Stack

Figure 5 displays the software component stack at each satellite server. It
addresses the challenge of integrating a wide variety of components and web
technologies in one general framework.

The left side of Fig. 5 shows the structure of the original WISE system [2],
upon which WISEngineering is built. WISE adopts a typical three tier structure.
At the bottom, sits the data tier. It consists of two MySQL databases that store
user and session information. Student responses and teacher feedback are also

Fig. 5. WISEngineering Software Stack

jlchiu@virginia.edu



330 X. Fu et al.

stored there. The logic layer is implemented as a collection of JavaEE servlets.
Then the presentation layer (customized for desktop browsers) renders the data
generated by the logic layer using a combination of JQuery and CSS.

The main design goal of WISEngineering is to keep all the original functions
of WISE, and extend it with other major functions such as automated grading
and a mobile portal. This is achieved using a similar three-tier structure, and
making minimal changes to the original WISE source code.

As shown on the right of Fig. 5, the extra WISEngineering components are
also structured in three layers. Several more MySQL databases are added to the
system to store information for automated grading system, design journal/wall,
and a user avatar system. Then an extra logic layer is added, using a variety of
platforms such as PHP and Python, depending on the components being inte-
grated. At the presentation layer, three portals are provided: a desktop portal
which enriches the original WISE system, a mobile portal which uses the Boot-
strap [17] responsive templates for mobile devices, and a special desktop portal
for educational researchers to train automated grading system and generate sys-
tem reports.

Notice that some WISEngineering components, such as the report generator,
do have to interact with the data tier of the original WISE environment. The
system is designed in a way so that tight coupling is minimized.

4 Achieving Extensibility

This section presents a number of design decisions we made to achieve extensi-
bility in WISEngineering. When new components are “plugged” into WISEngi-
neering, we use a service-oriented approach to wrap-up the standard interface of
a component so that it can be invoked by others.

4.1 Inter-Server Communication

In many cases, satellite servers have to exchange information with the main
server. One typical example is to generate aggregated reports. For instance, at
the main server, when a user requests the total number of video posts in a
specific date range, the data has to be retrieved from all satellite servers and
then aggregated by the main server.

Report generation is time consuming, mostly caused by huge join statements
in SQL queries. To simply retrieve data via an HTTP request can often time
out. Instead, the system has to provide a mechanism similar to restful web
services [20]. The detailed communication protocol is described below.

We assume E(k,m) is an encryption operation which uses key k to encrypt
message m and it is always true that E−1(k,E(k,m)) = m. Let the requester be
R (e.g., the main server) and the server be S (e.g., a satellite server). If R has
access to an operation P on S, there is a common secret sR,P,S shared between
R and S. The interaction follows the steps below:

1. R → S : request for operation P .

jlchiu@virginia.edu



WISEngineering: Achieving Scalability and Extensibility 331

2. S → R : (id, n). Here id is a unique service request identifier and n is a
nonce (random number). In the database of S, a new entry is established
for service request id where the field of operation result is left blank.
A timeout process is started simultaneously to kill the request operation if
it is timed out. At time out, the database entry is removed as well, to avoid
denial of service attack.

3. R → S : (E(sR,P,S , (id, n)) to prove that R has the access. Here, the use of
nonce n is to avoid replay attack.

4. S verifies the access right of R using E−1 and starts the operation P . When
P completes, it writes the data into operation result.

5. R will periodically check the status of request id, until the data is available
or time out.

On each server, an administrator application is provided for managing keys.
We use this lighter weight authentication protocol, instead of Kerberos [12], to
avoid failure of single point.

4.2 Open Architecture of Automated Grading

The extensibility of automated grading module is a similar but separate problem.
In this case, we would like to make the system extensible, in the sense that, new
machine learning algorithms can be added to the system in the future, to further
improve the precision of grading.

We use an open architecture and stack generalization algorithm to repeatedly
train and blend the results of a collection of automated grading algorithms.
Details are given below.

Automated grading is essentially a machine learning problem. Take edXEASE
[19] as an example. To train EASE, a user has to provide a training set of samples,
where each is a pair of string (student answer) and a number (trainer assigned
score). EASE, based on the number of samples (whether greater than 5), takes
one of the regression or classification approaches. Using sklearn [21], a machine
learning package in Python, EASE builds a classifier for each training set. Then,
the classifier (also called the model), can be used for grading, i.e., it generates a
numeric score for any string input.

The vector of features extracted for a model and the training algorithm used
usually determine the quality of a classifier. For example, the feature set of
EASE includes the bag of words (n-grams), length feature (counts of words,
punctuation etc.), the number of spelling errors, and the number of grammar
errors. This is suitable for essay grading, but may not be ideal for grading short
answer questions in a specific technical context in WISEngineering. For another
example, the sklearn package provides many different learning algorithms such
as support vector machine, nearest neighbors, and Gaussian Processes. A great
number of factors can determine the quality of auto-grading. Our framework
tries to use one more level of training to find an optimized combination of auto-
grading algorithms. We formalize our algorithm below.

jlchiu@virginia.edu



332 X. Fu et al.

Let Σ be the English alphabet, 2Σ is the domain of input. Let N be the
target range of scores. A classifier C is a function from 2Σ to N . Let 2C be the
domain of all classifiers. A training algorithm T is modeled as T : 22

Σ×N → 2C ,
which given a training set T , generates a classifier.

Our framework is a 2-level application of the stack generalization by D.
Wolpert [27]. The input of the algorithm is a collection of auto-grading (train-
ing) algorithms T1, ..., Tn. They will be the “ensemble” training algorithms at
level 0. Let θ = {e1, ..., ek} be the training samples, where each sample is a tuple
ei = (si, ni) where si is a string and ni is the numeric score. Given a training
sample, let input(ei) be its si and let score(ei) be its ni. At level 1, we use
k-NN as a selection algorithm (written as K) that selects the result generated
by level 0 algorithms. The training process works as follows:

1. Partition: build a set of partitions over θ. For each partition pi, it is con-
structed by picking one training sample from θ. More formally each pi is a
tuple (pi,1, pi,2) where pi,2 is a singleton element {ei}, and pi,1 = θ − pi,2.

2. Train level 1 selector K: the classifier generated by K will be a mapping from
Nn → [1, n] (where n is the number of level 0 training algorithms). Intuitively,
given a vector of numeric scores produced by all level 0 trainers, the level 1
selector chooses the result produced by one of the level 0 trainers.
Now we discuss how K is trained. For each partition pi, use its pi,1 as the
training set for each level 0 Tj , we obtain a classifier. Then using the level 1
classifier, we compute the output of Tj on pi,2. Given n level 0 trainers, we
have a vector of n output scores, and then we use score(pi,2) as the ground
fact for training. Officially, one training sample of K, derived from partition
pi is defined as below: Let Cj be the classifier generated by Tj on pi,1, i.e.,
Cj = Tj(pi,1). We have a training vector:

((C1(input(pi,2)), ..., Cn(input(pi,2))), score(pi,2))

Now given any question text q, let CK be the classifier generated by the above
algorithm. Let (v1, ..., vn) be the vector of results generated by level 0 classifiers.
Feed the vector to CK we get an index number between 1 and n, let it be i, then
the corresponding output is vi.

In summary, the two level stack generalization algorithm [27] allows the sys-
tem to extend with an arbitrary number of auto-grading algorithms.

5 Design for Scalability and Performance

System performance and scalability are the key to user satisfaction. This section
presents the related implementation details.

5.1 Video Processing

WISEngineering uses a loosely distributed server cluster for handling video
upload. The nodes of this cluster do not even have to belong to the same local
area network (LAN). Load balancing is achieved using a simple scheme.

jlchiu@virginia.edu



WISEngineering: Achieving Scalability and Extensibility 333

The main server keeps track of a list of servers capable of handling video
uploads. Each video processing server provides a set of web servlets, implemented
using PHP, for uploading video files. Once a file arrives, a video processing servlet
compresses the file, and uploads it to the Google/Youtube cloud service. All video
processing servers use the same Google/Youtube account. When a user requests
a video upload, e.g., in creating a design journal post, an AJAX request is sent
to the main server, to ask for a random decision on the video server to use. This
random video server is then used for upload and processing. Clearly, this scheme
is easily scalable by adding more processing servers to the pool.

5.2 Instant Feedback System

The preliminary automated grading system introduced in Sect. 4.2 is not appro-
priate to serve as an instant feedback system. To grade a question, the grader has
to load a pre-compiled classifier model, which takes at least 30 seconds on a typical
server. The grading itself, however, only takes less than a fraction of a second.

One naive solution is to make the grader running as a service/daemon process
in OS, and responding to grading request. This solution does not work for
WISEngineering because there are many graders and each consumes at least
10MB of RAM. One single server cannot host them all. On the other hand,
grading requests (due to how class sections are run) usually come in bursts.
That is, in a short period of time, the majority of grading requests can be for
a small subset of questions. We need a flexible way to create a large number of
graders and put down unused graders for saving system resources. This solution
has to be scalable to add new hardware resources.

General Architecture. The entire instant grading/feedback system (IFS), as
shown in Fig. 6, can be deployed in a local area network (LAN) different from
the main server. However, all cluster nodes of IFS have to be located in the same
LAN, for the convenience of setting up HDFS and Zookeeper services.

Fig. 6. HDFS/Zookeeper Cluster for Instant Feedback

jlchiu@virginia.edu



334 X. Fu et al.

The only externally visible component of IFS is its web portal. When a
student user submits to WISEngineering, an AJAX request is sent to IFS web
portal for instant feedback. Once the question is graded, a callback Javascript
function is invoked at the client side to display the auto-grader feedback.

Running behind the web portal is the entire IFS cluster. Figure 6 displays
its structure. IFS utilizes two Apache cloud frameworks: the HDFS distributed
file system and the Zookeeper synchronization service [9]. We use Zookeeper
as both a centralized directory service of all of our auto-grader services and
a synchronization service for providing atomic and mutual exclusive access of
shared data.

IFS Service Portal. The IFS web server and several Java applications (such as
IFS Service Manager and Job Dispatcher) are hosted in a physical server called
“Service Portal” (as shown on the left of Fig. 6).

The Service Manager is a daemon process. It examines the request/
performance statistics of the IFS web portal periodically and decides to start
new grading services or decommission unused ones. As the directory informa-
tion of all grading services are contained in Zookeeper, the Service Manager has
write access on the Zookeeper nodes.

The Job Dispatcher, once receiving a grading request (the question ID and a
student response) from the WISEngineering main server, generates a new service
ticket ID, and locates an available grading service by querying the directory
information in Zookeeper. The Grader Watcher service is also a daemon process.
It periodically checks the status of all auto-graders by sending them heartbeat
messages.

HDFS and Zookeeper. The IFS cluster relies on HDFS and Zookeeper. HDFS
serves as a shared file system among all computing nodes. It stores the classifier
models for grading, training data, and other pertinent information.

Zookeeper is used for synchronizing the requester processes (such as the Job
Dispatcher) and the service processes (such as the auto-graders) that are dis-
tributed on different servers.

More importantly, Zookeeper stores a central service directory of all services.
As shown in Fig. 6, the information is structured as a tree that embodies the
location and model data related to the graders for all questions in the system.

For example, when a new grading job is submitted to Job Dispatcher. It will
first create a job node in Zookeeper (documenting its status, unique ticket ID).
It then searches for an available grader in the pool of graders and updates its
status. When the grader finishes its job, it will update the Zookeeper central
directory (e.g., removing the job information and updating the grader status).

Grading Services. For each question, there is one or more grading packs. Each
grading pack consists of two processes: (1) an automatic grader process, and (2)
a shepherd process.

jlchiu@virginia.edu



WISEngineering: Achieving Scalability and Extensibility 335

The grader process is a daemon process. Depending on the grading module it
uses, it can be implemented using different languages (e.g., Python). The main
body of the process basically runs as an infinite loop, waiting for requests from
network sockets, which are sent from the shepherd process. When a request signal
arrives, it reads the details of the request, which is prepared by the Shepherd
process in advance.

The atomicity/mutual exclusive access of shared local files and classifier mod-
els are guaranteed by the Shepherd process (and Zookeeper). When the grader
process finishes processing, it writes the output to a local pipe. Then the Shepard
process reads the output and transfers it to HDFS, and then updates Zookeeper
to wake up the waiting requester.

In summary, the use of HDFS and Zookeeper makes IFS a highly scalable,
reliable, and robust system that can handle in-burst requests with reasonable
consumption of hardware resources.

6 Related Work

Traditional web based educational platforms, such as Blackboard [11] andMoodle
[14] provide standard course management functions, however, lack the support for
massive online learning. Emerging platforms such as edX [5] and OpenMooc [16],
embrace social media, mobile portal and cloud based video processing services
such as YouTube.

WISEngineering has the above features developed in parallel with the
aforementioned platforms and it has several unique features. First of all, WISEn-
gineering serves a special sector of massive online learning - large scale imple-
mentation of a same curriculum with the support of a national organization
(e.g., running Engineering educational activities through Boys & Girls Clubs
[3]). In WISEngineering, the same curriculum could be potentially used in hun-
dreds of classrooms in distant geographical regions. These classes are usually
small, in contrast to huge classes hosted on edX, which could have thousands of
students in one class section. The application context of WISEngineering raises
many interesting problems. For example, for the same curriculum, why does one
region have better learning outcomes than another? This demands that WISEn-
gineering provides a well-defined learning outcome structure and correlate it with
assessment questions and user behavior. It also determines the loosely coupled
network topology because organization units may be hosted on different servers.
This further leads to the need to aggregate reports from satellite servers and
hence the remote information exchange protocol among servers.

WISEngineering uses but goes one step beyond the edX EASE automated
grading module [19]. It adopts the stack generalization algorithm [27] for an
open architecture to blend multiple machine learning algorithms for grading.
Instant feedback system is built upon the auto-graders, and can handle the
grading requests in burst. It leverages the highly robust Zookeeper cluster [9]
for synchronizing and coordinating distributed auto-grader processes. This is in
line with the practice of big cloud systems such as the Eclipse Communication
Framework [10] and the Apache HBase [8].

jlchiu@virginia.edu



336 X. Fu et al.

Design for performance and scalability is always one of the greatest challenges
faced by web application developers [26]. The REST (Representational State
Transfer) pattern [6,7], allowing redundancy and caching, has been followed for
decades to scale up services. The design of WISEngineering adopts most of its
principles (e.g., the stateless request property), for serving client requests by
randomly selecting cluster nodes at run time. WISEngineering also tries to max-
imize the interoperability of components by standardizing their communication
interface, following the principles outlined in [15]. In general, the distributed
architecture allows WISEngineering to scale up easily by adding more hardware
resources. Its performance can be further tuned using Software Performance
Engineering [23].

7 Conclusion

This paper has presented WISEngineering, a novel web application addressing
the needs of massive online learning. The system provides many interesting fea-
tures such as a powerful and extensible automated grading and instant feedback
system, upon which a learning outcome analysis and reporting module is con-
structed. To achieve extensibility, an open software architecture is adopted to
integrate heterogeneous software components. To improve service performance
and scalability, back-end cloud clusters are used and interoperability is achieved
using a simple service invocation protocol. The WISEngineering system is a
promising platform that supports both learning and the research on learning.
Future directions include investigating data mining analysis techniques that asso-
ciate user behavior data with learning outcomes.

Acknowledgments. This work is partially supported by the National Science Foun-
dation Grants DRL-1422436 and DRL-1253523. The instant grading service cluster is
hosted by Hofstra Big Data Lab, funded by grant ESD CFA 29409.

References

1. Barwick, D.: Does Class Size Matter? Inside Higher Education. http://www.
insidehighered.com/views/2007/12/06/barwick

2. UC Berkeley. Berkley WISE System. https://wise.berkeley.edu/
3. Hofstra STEM Research Center. Research and Development: Advances in Wise

Guys & Gals - Boys and Girls as WISEngineering STEM Learners. http://www.
hofstra.edu/Academics/Colleges/SEAS/CTL/wise/research-development.html

4. Hofstra STEM Research Center. WISEngineering Web Portal. http://wgg1.
hofstra.edu

5. edX Inc., OpenEdx educational platform. https://open.edx.org/
6. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.

ACM Trans. Internet Technol. 2, 115–150 (2002)
7. Fielding, R.T.: Architectural Styles and the Design of Network-based Software

Architectures. PhD thesis, University of California, Irvine (2000)
8. Apache Foundation. Apache HBase. http://hbase.apache.org/

jlchiu@virginia.edu



WISEngineering: Achieving Scalability and Extensibility 337

9. Apache Foundation. Apache Zookeeper. http://zookeeper.apache.org/
10. The Eclipse Foundation. Eclipse Communication Framework Project Home.

http://www.eclipse.org/ecf/
11. Blackboard In.c. Blackboard Learning Platform. http://www.blackboard.com
12. Kohl, J., Neuman, C.: The Kerberos Network Authentication Service (V5). http://

tools.ietf.org/html/rfc1510
13. McIlroy, C.: Mass produced software components. In: Software Engineering: Report

of a conference sponsored by the NATO Science Committee, Garmisch, October
1968

14. Moodle.org. Moodle: Modular Object-Oriented Dynamic Learning Environment.
http://www.moodle.org

15. Nelson, D.: Next gen web architecture for the cloud era. In: SATURN 2013 Software
Architecture Conference (2013)

16. openmooc.org. OpenMooc: A fully open source MOOC solution. https://
openmooc.org/

17. Otto, M.: Say Hello to Bootstrap 2.0. https://blog.twitter.com/2012/say-hello-to-
bootstrap-2

18. Pappano, L.: The Year of MOOC. http://www.nytimes.com/2012/11/04/
education/edlife/massive-open-online-courses-are-multiplying-at-a-rapid-pace.
html?pagewanted=all&\ r=0

19. Paruchuri, V., Huang, D., Jarvis, J., Tauber, J., Aune, N., Kern, J.: EASE Auto-
Grading Module. https://github.com/edx/ease

20. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly (2007)
21. scikit-learn developers. Scikit-learn: machine learning in python. http://

scikit-learn.org/stable/
22. Slotta, J., Linn, M.: WISE Science: Web-based Inquiry in the Classroom. Teachers

College Press, New York (2009)
23. Smith, C., Williams, L.: Building responsive and scalable web applications. In:

26th International Computer Measurement Group Conference, pp. 127–138 (2000)
24. Spady, W.: Outcome Based Education: Critical Issues and Answers. American

Association of Schol Administrators, Arlington Virginia (1994)
25. The PhET Team. PhET: Interactive Simulation for Science and Math. http://

phet.colorado.edu/
26. Williams, L., Smith, C.: Web application scalability: a model-based approach. In:

Software Engineering Research and Performance Engineering Services, pp. 215–226
(2004)

27. Wolpert, H.D.: Stacked generalization. Neural Networks 5, 241–259 (1992)

jlchiu@virginia.edu


